Basit öğe kaydını göster

dc.contributor.authorBahaman, Aina Hazimah
dc.contributor.authorWahab, Roswanira Abdul
dc.contributor.authorHamid, Azzmer Azzar Abdul
dc.contributor.authorAbd Halim, Khairul Bariyyah
dc.contributor.authorKaya, Yilmaz
dc.date.accessioned2020-06-21T12:18:03Z
dc.date.available2020-06-21T12:18:03Z
dc.date.issued9999
dc.identifier.issn0739-1102
dc.identifier.issn1538-0254
dc.identifier.urihttps://doi.org/10.1080/07391102.2020.1751713
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10077
dc.descriptionAbdul Wahab, Roswanira/0000-0002-9982-6587en_US
dc.descriptionWOS: 000527609000001en_US
dc.descriptionPubMed: 32248752en_US
dc.description.abstractLiterature has shown that oil palm leaves (OPL) can be transformed into nanocellulose (NC) by fungal lignocellulosic enzymes, particularly those produced by the Trichoderma species. However, mechanism of beta-glucosidase and xylanase selectivity to degrade lignin, hemicellulose and cellulose in OPL for NC production remains relatively vague. The study aimed to comprehend this aspect by an in silico approach of molecular docking, molecular dynamics (MD) simulation and Molecular-mechanics Poisson-Boltzmann surface area (MM-PBSA) analysis, to compare interactions between the beta-glucosidase- and xylanase from Trichoderma asperellum UC1 in complex with each substrate. Molecular docking of the enzyme-substrate complex showed residues Glu165-Asp226-Glu423 and Arg155-Glu210-Ser160 being the likely catalytic residues of beta-glucosidase and xylanase, respectively. The binding affinity of beta-glucosidase for the substrates are as follows: cellulose (-8.1 kcal mol(-1)) > lignin (-7.9 kcal mol(-1)) > hemicellulose (-7.8 kcal mol(-1)), whereas, xylanase showed a corresponding preference for; hemicellulose (-6.7 kcal mol(-1)) > cellulose (-5.8 kcal mol(-1)) > lignin (-5.7 kcal mol(-1)). Selectivity of both enzymes was reiterated by MD simulations where interactions between beta-glucosidase-cellulose and xylanase-hemicellulose were the strongest. Notably low free-binding energy (Delta G(bind)) of beta-glucosidase and xylanase in complex with cellulose (-207.23 +/- 47.13 kJ/mol) and hemicellulose (-131.48 +/- 24.57 kJ/mol) were observed, respectively. The findings thus successfully identified the cellulose component selectivity of the polymer-acting beta-glucosidase and xylanase of T. asperellum UC1. Communicated by Ramaswamy H. Sarmaen_US
dc.description.sponsorshipUniversiti Teknologi Malaysia [Q.J130000.2526.17H48]en_US
dc.description.sponsorshipWe grateful to the Research University Grant awarded by Universiti Teknologi Malaysia (Grant number Q.J130000.2526.17H48) for funding this research.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/07391102.2020.1751713en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectTrichodermaen_US
dc.subjectmolecular dockingen_US
dc.subjectMM-PBSAen_US
dc.subjectnanocelluloseen_US
dc.subjectmolecular dynamics simulationen_US
dc.titleMolecular docking and molecular dynamics simulations studies on beta-glucosidase and xylanase Trichoderma asperellum to predict degradation order of cellulosic components in oil palm leaves for nanocellulose preparationen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalJournal of Biomolecular Structure & Dynamicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster