• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Using predictive analytics to identify drug-resistant epilepsy patients

Date

2020

Author

Delen, Dursun
Davazdahemami, Behrooz
Eryarsoy, Enes
Tomak, Leman
Valluru, Abhinav

Metadata

Show full item record

Abstract

Epilepsy is one of the most common brain disorders that greatly affects patients' quality of life and poses serious risks to their health. While the majority of the patients positively respond to the existing anti-epilepsy drugs, others who developed the refractory type of epilepsy show resistance against drug therapy and need to undergo advance treatments such as surgery. Given that identifying such patients is not a straightforward process and requires long courses of trial and error with anti-epilepsy drugs, this study aims at predicting those at-risk patients using clinical and demographic data obtained from electronic medical records. Specifically, the study employs several predictive analytics machine-learning methods, equipped with a novel approach for data balancing, to identify drug-resistant patients using their comorbidities and demographic information along with the initial epilepsy-related diagnosis made by their physician. The promising results we obtained highlight the potential use of machine-learning techniques in facilitating medical decisions and suggest the possibility of extending the proposed approach for developing a clinical decision support system for medical professionals.

Source

Health Informatics Journal

Volume

26

Issue

1

URI

https://doi.org/10.1177/1460458219833120
https://hdl.handle.net/20.500.12712/10145

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.