Show simple item record

dc.contributor.authorAydin, Nuh
dc.contributor.authorCengellenmis, Yasemin
dc.contributor.authorDertli, Abdullah
dc.contributor.authorDougherty, Steven T.
dc.contributor.authorSalturk, Esengul
dc.date.accessioned2020-06-21T12:18:39Z
dc.date.available2020-06-21T12:18:39Z
dc.date.issued2020
dc.identifier.issn1930-5346
dc.identifier.issn1930-5338
dc.identifier.urihttps://doi.org/10.3934/amc.2020005
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10251
dc.descriptionWOS: 000486951200006en_US
dc.description.abstractWe introduce skew constacyclic codes over the local Frobenius non-chain rings of order 16 by defining non-trivial automorphisms on these rings. We study the Gray images of these codes, obtaining a number of binary and quaternary codes with good parameters as images of skew cyclic codes over some of these rings.en_US
dc.description.sponsorshipTUBITAK (The Scientific and Technological Research Council of Turkey)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)en_US
dc.description.sponsorshipEsengul Salturk would like to thank TUBITAK (The Scientific and Technological Research Council of Turkey) for their support while writing this paper.en_US
dc.language.isoengen_US
dc.publisherAmer Inst Mathematical Sciences-Aimsen_US
dc.relation.isversionof10.3934/amc.2020005en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSkew-cyclic codeen_US
dc.subjectFrobenius ringsen_US
dc.subjectlocal ringsen_US
dc.titleSkew Constacyclic Codes Over the Local Frobenius Non-Chain Rings of Order 16en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume14en_US
dc.identifier.issue1en_US
dc.identifier.startpage53en_US
dc.identifier.endpage67en_US
dc.relation.journalAdvances in Mathematics of Communicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record