| dc.contributor.author | Adiguzel, Ali Osman |  | 
| dc.date.accessioned | 2020-06-21T12:18:40Z |  | 
| dc.date.available | 2020-06-21T12:18:40Z |  | 
| dc.date.issued | 2020 |  | 
| dc.identifier.issn | 1024-2422 |  | 
| dc.identifier.issn | 1029-2446 |  | 
| dc.identifier.uri | https://doi.org/10.1080/10242422.2020.1715370 |  | 
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/10258 |  | 
| dc.description | WOS: 000508822900001 | en_US | 
| dc.description.abstract | The use of enzymes in many industrial applications has gained increasing importance in recent years due to their non-toxic, specific, and eco-friendly characteristics. However, two main reasons limiting their use in industry are production costs and instability under harsh conditions. We isolated thermophilic and halo-tolerant/halophilic bacteria from bio-deteriorated plastic waste. Among them, Bacillus mojavensis isolate TH309 exhibited excellent esterase secretion ability. Esterase production on sunflower seed meal increased approximately 20-fold (80.43 U/gds) with optimization of solid state medium using Plackett Burman design and response surface methodology Box Behnken design. The enzyme (BmEST) was purified 7.82-fold using ultrafiltration and anion-exchange techniques. The molecular weight of BmEST was estimated to be 30 kDa. BmEST demonstrated an optimal temperature and pH of 80 degrees C and 8.0, respectively, and was remarkable stable at 60-90 degrees C. BmEST exhibited high activity and stability in the presence of NaCl (5-20%). Furthermore, it was hyper-activated by n-pentane, acetone, hexane, DMSO, methanol, and ethanol. The apparent K-m and V-max values of BmEST were 1.28 mM and 23.88 mu mol/min, respectively, with p-nitrophenol butyrate as a substrate. The enzyme caused a mass loss of poly(epsilon-caprolactone) films of 44% after 12 h hydrolysis. As a result, BmEST, with remarkable functional properties, presents a promising candidate to meet the needs of certain harsh biotechnological applications. | en_US | 
| dc.language.iso | eng | en_US | 
| dc.publisher | Taylor & Francis Ltd | en_US | 
| dc.relation.isversionof | 10.1080/10242422.2020.1715370 | en_US | 
| dc.rights | info:eu-repo/semantics/closedAccess | en_US | 
| dc.subject | Esterase | en_US | 
| dc.subject | thermo-stable | en_US | 
| dc.subject | halo-stable | en_US | 
| dc.subject | solvent-stable | en_US | 
| dc.subject | optimization | en_US | 
| dc.subject | characterization | en_US | 
| dc.title | Production and characterization of thermo-, halo- and solvent-stable esterase from Bacillus mojavensis TH309 | en_US | 
| dc.type | article | en_US | 
| dc.contributor.department | OMÜ | en_US | 
| dc.identifier.volume | 38 | en_US | 
| dc.identifier.issue | 3 | en_US | 
| dc.identifier.startpage | 210 | en_US | 
| dc.identifier.endpage | 226 | en_US | 
| dc.relation.journal | Biocatalysis and Biotransformation | en_US | 
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |