Show simple item record

dc.contributor.authorCaliskan, Omer
dc.contributor.authorKurt, Dursun
dc.contributor.authorCamas, Necdet
dc.contributor.authorOdabas, Mehmet Serhat
dc.date.accessioned2020-06-21T12:19:13Z
dc.date.available2020-06-21T12:19:13Z
dc.date.issued2020
dc.identifier.issn1230-1485
dc.identifier.issn2083-5906
dc.identifier.urihttps://doi.org/10.15244/pjoes/95031
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10367
dc.descriptionKURT, DURSUN/0000-0001-6697-3954en_US
dc.descriptionWOS: 000492020300004en_US
dc.description.abstractThe artificial neural network (ANN) method was used in this study for predicting sugar beet (Beta vulgaris L.) leaf chlorophyll concentration from leaves. The experiment was carried out in field conditions in 2015-2016. In this research, symbiotic mychorrhizae as Bio-one (Azotobacter vinelandii and Clostridium pasteurianum) in commercial preparation (10 kg/da) and ammonium sulfate (40 kg/da) were use used as a fertilizer. In order to measure the leaves' chlorophyll concentration we used a SPAD-502 chlorophyll meter. Artificial neural network, red, green, and blue components of the images were used which was developed to predict chlorophyll concentration. The results showed the ANN model able to estimate sugar beet leaf chlorophyll concentration. The coefficient of determination (R-2) was found to be 0.98 while mean square error (MSE) was obtained as 0.007 from validation.en_US
dc.language.isoengen_US
dc.publisherHarden_US
dc.relation.isversionof10.15244/pjoes/95031en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectSPAD meteren_US
dc.subjectBeta vulgarisen_US
dc.subjectsugarbeeten_US
dc.subjectartificial neural networken_US
dc.subjectprecision agricultureen_US
dc.titleEstimating Chlorophyll Concentration Index in Sugar Beet Leaves Using an Artificial Neural Networken_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume29en_US
dc.identifier.issue1en_US
dc.identifier.startpage25en_US
dc.identifier.endpage31en_US
dc.relation.journalPolish Journal of Environmental Studiesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record