Show simple item record

dc.contributor.authorDashti, Amir
dc.contributor.authorNoushabadi, Abolfazl Sajadi
dc.contributor.authorRaji, Mojtaba
dc.contributor.authorRazmi, Amir
dc.contributor.authorCeylan, Selim
dc.contributor.authorMohammadi, Amir H.
dc.date.accessioned2020-06-21T12:19:51Z
dc.date.available2020-06-21T12:19:51Z
dc.date.issued2019
dc.identifier.issn0016-2361
dc.identifier.issn1873-7153
dc.identifier.urihttps://doi.org/10.1016/j.fuel.2019.115931
dc.identifier.urihttps://hdl.handle.net/20.500.12712/10472
dc.descriptionDashti, Amir/0000-0002-3937-7353; Mohammadi, Amir H/0000-0002-2947-1135en_US
dc.descriptionWOS: 000486413500031en_US
dc.description.abstractIn order to evaluate the potential and make a technical assessment of biomass energy, it is crucial to determine the higher heating value (HHV) of biomass fuels. Thus, multilayer perceptron artificial neural network (MLP-ANN) genetic algorithm-adaptive neuro fuzzy inference system (GA-ANFIS) differential evolution-ANFIS (DE-ANFIS), GA-radial basis function (GA-RBF), least square support vector machine (LSSVM) methods and an empirical correlation (multivariate polynomial regression (MPR)) were employed for the estimation of the HHV of biomass fuels. The comparisons of results show that GA-RBF and MPR models have higher accuracy as coefficients of regression (R-2) values equal to 0.9591 and 0.9597, respectively. The average Absolute Relative Errors (% AARD) were obtained as 3.9547 for GA-RBF and 3.9791 for MPR models. The results show that proposed techniques are working efficiently in the estimation of HHV of different sources of biomass.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.isversionof10.1016/j.fuel.2019.115931en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBiomassen_US
dc.subjectHigher heating value (HHV)en_US
dc.subjectEstimationen_US
dc.subjectSmart modelingen_US
dc.subjectData miningen_US
dc.titleEstimation of biomass higher heating value (HHV) based on the proximate analysis: Smart modeling and correlationen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume257en_US
dc.relation.journalFuelen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record