dc.contributor.author | Sagir, Birsen | |
dc.contributor.author | Erdogan, Fatmanur | |
dc.date.accessioned | 2020-06-21T13:05:00Z | |
dc.date.available | 2020-06-21T13:05:00Z | |
dc.date.issued | 2019 | |
dc.identifier.issn | 0354-5180 | |
dc.identifier.uri | https://doi.org/10.2298/FIL1909601S | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/11059 | |
dc.description | WOS: 000499102700005 | en_US |
dc.description.abstract | In this paper, we define a non-Newtonian superposition operator P-N(f) where f : N x R(N)(alpha) -> R(N)(beta) by P-N(f) (x) = (f (k, x(k)))(k=1)(infinity) for every non-Newtonian real sequence x = (x(k)). Chew and Lee [4] have characterized P-f : l(p) -> l(1) and P-f : c(0) -> l(1) for 1 <= p < infinity. The purpose of this paper is to generalize these works respect to the non-Newtonian calculus. We characterize P-N(f) : l(infinity)(N) -> l(1)(N), P-N(f) : c(0)(N) -> l(1)(N) and P-N(f) : l(p)(N) -> l(1)(N) respectively. Then we show that such P-N(f) : l(infinity)(N) -> l(1)(N) is *-continuous if and only if f(k, .) is *-continuous for every k is an element of N. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Univ Nis, Fac Sci Math | en_US |
dc.relation.isversionof | 10.2298/FIL1909601S | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | *-Continuity | en_US |
dc.subject | non-Newtonian superposition operator | en_US |
dc.subject | non-Newtonian sequence spaces | en_US |
dc.title | On Characterization of Non-Newtonian Superposition Operators in Some Sequence Spaces | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 33 | en_US |
dc.identifier.issue | 9 | en_US |
dc.identifier.startpage | 2601 | en_US |
dc.identifier.endpage | 2612 | en_US |
dc.relation.journal | Filomat | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |