• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of neuromuscular diseases with artificial intelligence methods

Date

2019

Author

Kucuk, Hanife
Eminoglu, Ilyas
Balci, Kemal

Metadata

Show full item record

Abstract

In this study, a classification structure consisting of five processing stages was organized for the diagnosis of ALS and Myopathic diseases, the most common types of neuromuscular diseases.EMG (Electromyogram) signals have been passed through pre-processing, division, clustering, and feature extraction steps before being classified. Hybrid clustering method is used in clustering phase. Afterwards, feature vectors intime and frequency domains and their different combinations of multiple feature vectors (a total of 25 feature vectors) are used. In the next step, data are classified by Support Vector Machine (DVM), K-Nearest Neighbor (K-EYK) algorithm and Discriminant Analysis (DA) algorithms. Verification is used as a measure of cross-validation method. Cross-validation of the k-value of 10 is selected. Experimental results show that the proposed feature vectors are more successful than the single feature vectors of multiple feature vectors. When usedin multiple feature vectors; SVM classifier, has classified the EMG signals withhigher accuracy in according to the K-NN and DA classifiers. Total accuracy is97.39% for ALS and 86.74% for the myogenic. It is understood with this study; the classification performance depends on a high degree of feature vectors of interclass separability.

Source

Journal of the Faculty of Engineering and Architecture of Gazi University

Volume

34

Issue

4

URI

https://doi.org/10.17341/gazimmfd.571506
https://hdl.handle.net/20.500.12712/11136

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.