Show simple item record

dc.contributor.authorNebiyev, Celil
dc.date.accessioned2020-06-21T13:05:15Z
dc.date.available2020-06-21T13:05:15Z
dc.date.issued2019
dc.identifier.issn1787-2405
dc.identifier.issn1787-2413
dc.identifier.urihttps://doi.org/10.18514/MMN.2019.2844
dc.identifier.urihttps://hdl.handle.net/20.500.12712/11143
dc.descriptionWOS: 000471249600031en_US
dc.description.abstractIn this work, some properties of supplement elements in lattices are investigated. Some relation between lying above and (weak) supplement elements also studied. Some properties of supplement submodules in modules which given in [8] are generalized to lattices. Let a be a supplement of b in a lattice L. If a/0 has at least one maximal (not equal a) element, then it is possible to define a bijective map between the maximal elements (not equal a) of a/0 and the maximal elements (not equal 1) of 1/b. Let a be a supplement element in a lattice L. If L is amply supplemented, then a/0 is also amply supplemented. If L is weakly supplemented, then a/0 is also weakly supplemented.en_US
dc.language.isoengen_US
dc.publisherUniv Miskolc Inst Mathen_US
dc.relation.isversionof10.18514/MMN.2019.2844en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectlatticesen_US
dc.subjectsmall elementsen_US
dc.subjectsupplemented latticesen_US
dc.subjectcomplemented latticesen_US
dc.titleOn Supplement Elements in Latticesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume20en_US
dc.identifier.issue1en_US
dc.identifier.startpage441en_US
dc.identifier.endpage449en_US
dc.relation.journalMiskolc Mathematical Notesen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record