Basit öğe kaydını göster

dc.contributor.authorCeylan, Z.
dc.contributor.authorPekel, E.
dc.contributor.authorCeylan, S.
dc.contributor.authorBulkan, S.
dc.date.accessioned2020-06-21T13:05:45Z
dc.date.available2020-06-21T13:05:45Z
dc.date.issued2018
dc.identifier.issn1790-7632
dc.identifier.urihttps://doi.org/10.30955/gnj.002772
dc.identifier.urihttps://hdl.handle.net/20.500.12712/11253
dc.descriptionWOS: 000455246400019en_US
dc.description.abstractIn this study, a new model for biomass higher heating value (HHV) prediction based on the Adaptive Neuro-Fuzzy Inference System (ANFIS) approach was proposed. Proximate analysis (volatile matter, fixed carbon and ash content) data for a wide range of various biomass types from the literature were used as input in model studies. Optimization of ANFIS parameters and formation of the model structure were performed by genetic algorithm (GA) and particle swarm optimization (PSO) algorithm in order to achieve optimum prediction capability. The best-fitting model was selected using statistical analysis tools. According to the analysis, PSO-ANFIS model showed a superior prediction capability over ANFIS and GA optimized ANFIS model. The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Mean Bias Error (MBE) and coefficient of determination (R-2) for PSO-ANFIS were determined as 0.3138, 0.2545, -0.00129 and 0.9791 in the training phase and 0.3287, 0.2748, 0.00120 and 0.9759 in the testing phase, respectively. As a result, it can be concluded that the proposed PSO-ANFIS model is an efficient technique and has potential to calculate biomass HHV prediction with high accuracy.en_US
dc.language.isoengen_US
dc.publisherGlobal Network Environmental Science & Technologyen_US
dc.relation.isversionof10.30955/gnj.002772en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiomassen_US
dc.subjectHigher Heating Valueen_US
dc.subjectPredictionen_US
dc.subjectANFISen_US
dc.subjectGenetic Algorithmen_US
dc.subjectParticle Swarm Optimizationen_US
dc.titleBiomass Higher Heating Value Prediction Analysis by ANFIS, PSO-ANFIS and GA-ANFISen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume20en_US
dc.identifier.issue3en_US
dc.identifier.startpage589en_US
dc.identifier.endpage597en_US
dc.relation.journalGlobal Nest Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster