Basit öğe kaydını göster

dc.contributor.authorAkdemir, A.
dc.contributor.authorFiliz, B.
dc.contributor.authorAkdemir, Ozel U.
dc.date.accessioned2020-06-21T13:11:43Z
dc.date.available2020-06-21T13:11:43Z
dc.date.issued2018
dc.identifier.issn1790-7632
dc.identifier.urihttps://hdl.handle.net/20.500.12712/11752
dc.descriptionWOS: 000428114800013en_US
dc.description.abstractThe method of Levenberg-Marquardt learning algorithm was investigated for estimating tropospheric ozone concentration. The Levenberg-Marquardt learning algorithm has 12 input neurons (6 pollutants and 6 meteorological variables), 28 neurons in the hidden layer, and 1 output neuron for the Ozone (O-3) estimate. The Multilayer Perceptron Model (MLP) performance was found to make good predictions with the mean square error (MSE) less than 1 mu g/m(3) (0.002 mu g/m(3)). In addition, the correlation coefficient ranges from 0.74 to 0.95 in The Levenberg-Marquardt learning. The Levenberg-Marquardt learning algorithm that a multilayer perception method of Artificial Neural Network (ANN) has performed well and an effective approach for predicting tropospheric ozone. Ozone concentration was influenced predominantly by the nitrogen oxide (NOx, NO2, NO), SO2 and temperature. The model did not predict solar radiation to ozone with sufficient accuracy.en_US
dc.description.sponsorshipResearch Fund of the Ondokuzmayis University [PYO.MUH.1906.11.005]en_US
dc.description.sponsorshipThis work was supported by the Research Fund of the Ondokuzmayis University (Project number: PYO.MUH.1906.11.005).en_US
dc.language.isoengen_US
dc.publisherGlobal Network Environmental Science & Technologyen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectMLPen_US
dc.subjectLevenberg-Marquardten_US
dc.subjectOzoneen_US
dc.subjectANNen_US
dc.titleInvestigation of performance of tropospheric ozone estimations in the industrial region using differential Artificial Neural Networks methodsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume20en_US
dc.identifier.issue1en_US
dc.identifier.startpage103en_US
dc.identifier.endpage108en_US
dc.relation.journalGlobal Nest Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster