Basit öğe kaydını göster

dc.contributor.authorKoksal, Eyup Selim
dc.contributor.authorCemek, Bilal
dc.contributor.authorCetin, Sakine
dc.contributor.authorGowda, Prasanna H.
dc.contributor.authorHowell, Terry A.
dc.date.accessioned2020-06-21T13:19:06Z
dc.date.available2020-06-21T13:19:06Z
dc.date.issued2017
dc.identifier.issn1350-4827
dc.identifier.issn1469-8080
dc.identifier.urihttps://doi.org/10.1002/met.1644
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12381
dc.descriptionWOS: 000405396000014en_US
dc.description.abstractRemote sensing based evapotranspiration (ET) mapping has become an important tool for water resources management at a regional scale. Accurate hourly climatic data and alfalfa-reference ET (ETr) are crucial inputs for successfully implementing remote sensing based ET models such as Mapping Evapotranspiration at High Resolution with Internalized Calibration (METRIC) and Surface Energy Balance Algorithm for Land (SEBAL). In Turkey, hourly climatic data may not be available at all locations, either due to cost constraints or due to equipment malfunctioning. In this study, the artificial neural network (ANN) technique was used to estimate missing and unmeasured hourly climatic data and ETr for the agriculturally important semi-humid Bafra plains located in northern Turkey. Modelled and actual climatic data were used to derive ET maps from two Landsat 5 Thematic Mapper images acquired on 2 September 2009 and 4 August 2010. The METRIC algorithm was used to generate ET maps. Accuracy assessment of the METRIC-derived ET maps indicated that climatic data and ETr estimated through ANN could be used for accurately mapping ET, where hourly climatic data are missing or not measured.en_US
dc.language.isoengen_US
dc.publisherWileyen_US
dc.relation.isversionof10.1002/met.1644en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectevapotranspiration mappingen_US
dc.subjectMETRICen_US
dc.subjectmissing climatic dataen_US
dc.subjectartificial neural networken_US
dc.titleEstimating missing hourly climatic data using artificial neural network for energy balance based ET mapping applicationsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume24en_US
dc.identifier.issue3en_US
dc.identifier.startpage457en_US
dc.identifier.endpage465en_US
dc.relation.journalMeteorological Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster