Show simple item record

dc.contributor.authorUzun, Harun
dc.contributor.authorYildiz, Zeynep
dc.contributor.authorGoldfarb, Jillian L.
dc.contributor.authorCeylan, Selim
dc.date.accessioned2020-06-21T13:19:29Z
dc.date.available2020-06-21T13:19:29Z
dc.date.issued2017
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2017.03.015
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12435
dc.descriptionWOS: 000402477000016en_US
dc.descriptionPubMed: 28319760en_US
dc.description.abstractAs biomass becomes more integrated into our energy feed stocks, the ability to predict its combustion enthalpies from routine data such as carbon, ash, and moisture content enables rapid decisions about utilization. The present work constructs a novel artificial neural network model with a 3-3-1 tangent sigmoid architecture to predict biomasses' higher heating values from only their proximate analyses, requiring minimal specificity as compared to models based on elemental composition. The model presented has a considerably higher correlation coefficient (0.963) and lower root mean square (0.375), mean absolute (0.328), and mean bias errors (0.010) than other models presented in the literature which, at least when applied to the present data set, tend to under-predict the combustion enthalpy. (C) 2017 Elsevier Ltd. All rights reserved.en_US
dc.description.sponsorshipOndokuz Mayis University/BAPOndokuz Mayis University [PYO.MUH. of 1904.15.012]en_US
dc.description.sponsorshipThis study was supported by Ondokuz Mayis University/BAP with a project number PYO.MUH. of 1904.15.012.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.isversionof10.1016/j.biortech.2017.03.015en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectHigher heating valueen_US
dc.subjectArtificial neural networken_US
dc.subjectBiomassen_US
dc.subjectProximate analysisen_US
dc.titleImproved prediction of higher heating value of biomass using an artificial neural network model based on proximate analysisen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume234en_US
dc.identifier.startpage122en_US
dc.identifier.endpage130en_US
dc.relation.journalBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record