dc.contributor.author | Odabas, Mehmet Serhat | |
dc.contributor.author | Senyer, Nurettin | |
dc.contributor.author | Kayhan, Gokhan | |
dc.contributor.author | Ergun, Erhan | |
dc.date.accessioned | 2020-06-21T13:26:47Z | |
dc.date.available | 2020-06-21T13:26:47Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 0218-1266 | |
dc.identifier.issn | 1793-6454 | |
dc.identifier.uri | https://doi.org/10.1142/S0218126617500268 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/12624 | |
dc.description | WOS: 000387907500009 | en_US |
dc.description.abstract | In this study, the effectiveness of an SPAD-502 portable chlorophyll (Chl) meter was evaluated for estimating the Chl contents in leaves of some medicinal and aromatic plants. To predict the individual chlorophyll concentration indexes of St. John's wort (Hypericum perforatum L.), mint (Mentha angustifolia L.), melissa (Melissa offcinalis L.), thyme (Thymus sp.), and echinacea (Echinacea purpurea L.), models were developed using SPAD value. Multi-layer perceptron (MLP), adaptive neuro fuzzy inference system (ANFIS), and general regression neural network (GRNN) were used for determining the chlorophyll concentration indexes. | en_US |
dc.description.sponsorship | Ondokuz Mayis UniversityOndokuz Mayis University [PYO.MUH.1901.13.002] | en_US |
dc.description.sponsorship | The study was supported by Ondokuz Mayis University (PYO.MUH.1901.13.002). The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | World Scientific Publ Co Pte Ltd | en_US |
dc.relation.isversionof | 10.1142/S0218126617500268 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Medicinal and aromatic plants | en_US |
dc.subject | artificial neural network | en_US |
dc.subject | SPAD | en_US |
dc.subject | MLP | en_US |
dc.subject | ANFIS | en_US |
dc.subject | GRNN | en_US |
dc.title | Estimation of Chlorophyll Concentration Index at Leaves using Artificial Neural Networks | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.volume | 26 | en_US |
dc.identifier.issue | 2 | en_US |
dc.relation.journal | Journal of Circuits Systems and Computers | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |