Basit öğe kaydını göster

dc.contributor.authorSozen, Esra Ozturk
dc.contributor.authorEren, Senol
dc.date.accessioned2020-06-21T13:27:02Z
dc.date.available2020-06-21T13:27:02Z
dc.date.issued2017
dc.identifier.issn1307-5543
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12695
dc.descriptionWOS: 000423900800011en_US
dc.description.abstractLet R be a ring and M be a left R-module. In this paper, we define modules with the properties (delta-E) and (delta-EE), which are generalized version of Zoschinger's modules with the properties (E) and (EE), and provide various properties of these modules. We prove that the class of modules with the property (6-E) is closed under direct summands and finite direct sums. It is shown that a module M has the property (delta-EE) if and only if every submodule of M has the property (delta-E). It is a known fact that a ring R is perfect if and only if every left R-module has the property (E). As a generalization of this, we prove that if R is a delta-perfect ring then every left R-module has the property (delta-E). Moreover, the converse is also true on delta-semiperfecten_US
dc.language.isoengen_US
dc.publisherEuropean Journal Pure & Applied Mathematicsen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupplementen_US
dc.subjectdelta-supplementen_US
dc.subjectdelta-perfect ringen_US
dc.subjectdelta-semiperfect ringen_US
dc.subjectmodule extensionen_US
dc.titleModules that Have a delta-supplement in Every Extensionen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume10en_US
dc.identifier.issue4en_US
dc.identifier.startpage730en_US
dc.identifier.endpage738en_US
dc.relation.journalEuropean Journal of Pure and Applied Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster