Basit öğe kaydını göster

dc.contributor.authorAlkan, Nesrin
dc.contributor.authorTerzi, Yuksel
dc.contributor.authorCengiz, M. Ali
dc.date.accessioned2020-06-21T13:27:04Z
dc.date.available2020-06-21T13:27:04Z
dc.date.issued2017
dc.identifier.issn0361-0918
dc.identifier.issn1532-4141
dc.identifier.urihttps://doi.org/10.1080/03610918.2016.1248568
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12703
dc.descriptionWOS: 000422900600006en_US
dc.description.abstractThe aim of this study is to determine the effect of informative priors for variables with missing value and to compare Bayesian Cox regression and Cox regression analysis. For this purpose, firstly simulated data sets with different sample size within different missing rate were generated and each of data sets were analysed by Cox regression and Bayesian Cox regression with informative prior. Secondly lung cancer data set as real data set was used foranalysis. Consequently, using informative priors for variables with missing value solved the missing data problem.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/03610918.2016.1248568en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBayesian Cox regressionen_US
dc.subjectCox regressionen_US
dc.subjectMissing at randomen_US
dc.subjectMissing valueen_US
dc.titleUsing informative priors for handling missing data problem in Cox regressionen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume46en_US
dc.identifier.issue10en_US
dc.identifier.startpage7614en_US
dc.identifier.endpage7623en_US
dc.relation.journalCommunications in Statistics-Simulation and Computationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster