Basit öğe kaydını göster

dc.contributor.authorDunder, Emre
dc.contributor.authorGumustekin, Serpil
dc.contributor.authorMurat, Naci
dc.contributor.authorCengiz, Mehmet Ali
dc.date.accessioned2020-06-21T13:27:20Z
dc.date.available2020-06-21T13:27:20Z
dc.date.issued2017
dc.identifier.issn0361-0926
dc.identifier.issn1532-415X
dc.identifier.urihttps://doi.org/10.1080/03610926.2016.1257718
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12765
dc.descriptionWOS: 000412555500013en_US
dc.description.abstractSubset selection is an extensively studied problem in statistical learning. Especially it becomes popular for regression analysis. This problem has considerable attention for generalized linear models as well as other types of regression methods. Quantile regression is one of the most used types of regression method. In this article, we consider subset selection problem for quantile regression analysis with adopting some recent Bayesian information criteria. We also utilized heuristic optimization during selection process. Simulation and real data application results demonstrate the capability of the mentioned information criteria. According to results, these information criteria can determine the true models effectively in quantile regression models.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Incen_US
dc.relation.isversionof10.1080/03610926.2016.1257718en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectQuantile regressionen_US
dc.subjectBayesian informationen_US
dc.subjectSubset selectionen_US
dc.subjectOptimizationen_US
dc.subjectHeuristicen_US
dc.titleSubset selection in quantile regression analysis via alternative Bayesian information criteria and heuristic optimizationen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume46en_US
dc.identifier.issue22en_US
dc.identifier.startpage11091en_US
dc.identifier.endpage11098en_US
dc.relation.journalCommunications in Statistics-Theory and Methodsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster