Show simple item record

dc.contributor.authorSozen, Esra Ozturk
dc.contributor.authorEryilmaz, Figen
dc.contributor.authorEren, Senol
dc.date.accessioned2020-06-21T13:27:42Z
dc.date.available2020-06-21T13:27:42Z
dc.date.issued2017
dc.identifier.issn1844-9581
dc.identifier.urihttps://hdl.handle.net/20.500.12712/12832
dc.descriptionWOS: 000404867100007en_US
dc.description.abstractWe study modules with the properties (delta-TWE) and (delta-TWEE) which are adopted Zoschinger's modules with the properties (E) and (EE). We call a module (delta-TWE) module if M has a weak delta-supplement in every torsion extension. Similarly if M has ample weak delta-supplements in every torsion extension then M is called (delta-TWEE) module. We obtain various properties of these modules. We will show that (1) Every direct summand of a (delta-TWE) module is a (delta-TWE) module. (2) A module M has the property (delta-TWEE) iff every submodule of M has the property (delta-TWE). (3) Any factor module of a (delta-TWE) module is a (delta-TWE) module under a special condition. (4) Over a non local ring, if every submodule of a module M is a (delta-TWE) module, then it is cofinitely weak delta-supplemented.en_US
dc.language.isoengen_US
dc.publisherEditura Bibliotheca-Bibliotheca Publ Houseen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectdelta-small submoduleen_US
dc.subjectweak delta-supplementen_US
dc.subjecttorsion extensionen_US
dc.titleMODULES THAT HAVE A WEAK delta-SUPPLEMENT IN EVERY TORSION EXTENSIONen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.issue2en_US
dc.identifier.startpage269en_US
dc.identifier.endpage274en_US
dc.relation.journalJournal of Science and Artsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record