dc.contributor.author | Sozen, Esra Ozturk | |
dc.contributor.author | Eryilmaz, Figen | |
dc.contributor.author | Eren, Senol | |
dc.date.accessioned | 2020-06-21T13:27:42Z | |
dc.date.available | 2020-06-21T13:27:42Z | |
dc.date.issued | 2017 | |
dc.identifier.issn | 1844-9581 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/12832 | |
dc.description | WOS: 000404867100007 | en_US |
dc.description.abstract | We study modules with the properties (delta-TWE) and (delta-TWEE) which are adopted Zoschinger's modules with the properties (E) and (EE). We call a module (delta-TWE) module if M has a weak delta-supplement in every torsion extension. Similarly if M has ample weak delta-supplements in every torsion extension then M is called (delta-TWEE) module. We obtain various properties of these modules. We will show that (1) Every direct summand of a (delta-TWE) module is a (delta-TWE) module. (2) A module M has the property (delta-TWEE) iff every submodule of M has the property (delta-TWE). (3) Any factor module of a (delta-TWE) module is a (delta-TWE) module under a special condition. (4) Over a non local ring, if every submodule of a module M is a (delta-TWE) module, then it is cofinitely weak delta-supplemented. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Editura Bibliotheca-Bibliotheca Publ House | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | delta-small submodule | en_US |
dc.subject | weak delta-supplement | en_US |
dc.subject | torsion extension | en_US |
dc.title | MODULES THAT HAVE A WEAK delta-SUPPLEMENT IN EVERY TORSION EXTENSION | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.startpage | 269 | en_US |
dc.identifier.endpage | 274 | en_US |
dc.relation.journal | Journal of Science and Arts | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |