Basit öğe kaydını göster

dc.contributor.authorSungur, Bilal
dc.contributor.authorTopaloglu, Bahattin
dc.contributor.authorOzcan, Hakan
dc.date.accessioned2020-06-21T13:31:55Z
dc.date.available2020-06-21T13:31:55Z
dc.date.issued2016
dc.identifier.issn0360-5442
dc.identifier.issn1873-6785
dc.identifier.urihttps://doi.org/10.1016/j.energy.2016.07.040
dc.identifier.urihttps://hdl.handle.net/20.500.12712/13047
dc.descriptionHakan, OZCAN/0000-0002-7848-3650; Sungur, Bilal/0000-0002-7320-1490en_US
dc.descriptionWOS: 000386410500005en_US
dc.description.abstractThis paper presents an experimental study about the effects of nanoparticles added to diesel fuels on the combustion performance and emissions of a flame tube boiler. Nanodiesel fuels were prepared by adding aluminum oxide (Al2O3) and titanium oxide (TiO2) nanoparticles. The performance and emissions measurements were realized in a residential, water-cooled, reversal flame tube boiler. The temperature distributions in the combustion chamber, combustion performance and exhaust gas emissions of nanodiesel with 100, 200 and 300 ppm nanoparticles were studied and these were compared with the neat diesel fuel. The results showed that addition of nanoparticles decreased the size of the peak temperature zones and increased the thermal efficiency slightly from about 90.4% to 90.9% with addition of nanoparticles up to 300 ppm. CO emissions decreased up to 200 ppm from 275 to 75 ppm by using 300 ppm Al2O3 nanoparticles, and decreased up to 50 ppm from 275 to 225 ppm by using 300 ppm TiO2 nanoparticles. It was observed that nanodiesels did not affect the NOx, emissions significantly, which were about 47-51 ppm. The results of Al2O3 and TiO2 nanoadditives showed similar trends, but Al2O3 nanodiesel has a bit better performance and emission characteristics compared to TiO2 nanodiesel. (C) 2016 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.isversionof10.1016/j.energy.2016.07.040en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAluminum oxide nanoparticlesen_US
dc.subjectTitanium oxide nanoparticlesen_US
dc.subjectBoileren_US
dc.subjectTemperature distributionsen_US
dc.subjectExhaust emissionsen_US
dc.titleEffects of nanoparticle additives to diesel on the combustion performance and emissions of a flame tube boileren_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume113en_US
dc.identifier.startpage44en_US
dc.identifier.endpage51en_US
dc.relation.journalEnergyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster