Show simple item record

dc.contributor.authorGurkanli, Ahmet Turan
dc.contributor.authorKulak, Oznur
dc.contributor.authorSandikci, Ayse
dc.date.accessioned2020-06-21T13:32:10Z
dc.date.available2020-06-21T13:32:10Z
dc.date.issued2016
dc.identifier.issn1072-947X
dc.identifier.issn1572-9176
dc.identifier.urihttps://doi.org/10.1515/gmj-2016-0003
dc.identifier.urihttps://hdl.handle.net/20.500.12712/13140
dc.descriptionSandikci, Ayse/0000-0001-5800-5558en_US
dc.descriptionWOS: 000387132700006en_US
dc.description.abstractFix a nonzero window g is an element of S(IRn), a weight function w on R-2n and 1 <= p, q <= infinity. The weighted Lorentz type modulation space M(p, q, w)(R-n) consists of all tempered distributions f is an element of S'(R-n) such that the short time Fourier transform V(g)f is in the weighted Lorentz space L(p, q, wd mu)(R-2n). The norm on M(p, q, w)(R-n) is vertical bar vertical bar f vertical bar vertical bar(M(p, q, w)) = vertical bar vertical bar V(g)f vertical bar vertical bar pq, w. This space was firstly defined and some of its properties were investigated for the unweighted case by Gurkanli in [ 9] and generalized to the weighted case by Sandikci and Gurkanli in [16]. Let 1 < p(1), p(2) < infinity, 1 <= q(1), q(2) < infinity, 1 <= p(3), q(3) <= infinity, omega(1), omega(2) be polynomial weights and omega(3) be a weight function on R-2n. In the present paper, we define the bilinear multiplier operator from M(p(1), q(1), omega(1))(R-n) x M(p(2), q(2), omega(2))(R-n) to M(p(3), q(3), omega(3))(R-n) in the following way. Assume that m(xi, eta) is a bounded function on R-2n, and define Bm(f, g)(x) = integral(Rn) integral(Rn) <(f)over cap>(xi)(g) over cap(eta)m(xi, eta)e(2 pi i(xi+eta,x))d xi d eta for all f,g is an element of S(R-n). The function m is said to be a bilinear multiplier on R-n of type (p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3)) if B-m is the bounded bilinear operator from M(p(1), q(1), omega(1))(R-n) x M(p(2), q(2), omega(2))(R-n) to M(p(3), q(3), omega(3))(R n). We denote by BM(p(1), q(1), omega(1); p(2), q(2), omega(2))(R-n) the space of all bilinear multipliers of type (p(1), q(1), omega(1); p(2), q(2), omega(2); p(3), q(3), omega(3)), and define vertical bar vertical bar m vertical bar vertical bar((p1, q1, omega 1; p2, q2, omega 2; p3, q3,) omega 3) = vertical bar vertical bar B-m vertical bar vertical bar. We discuss the necessary and sufficient conditions for B-m to be bounded. We investigate the properties of this space and we give some examples.en_US
dc.language.isoengen_US
dc.publisherWalter De Gruyter Gmbhen_US
dc.relation.isversionof10.1515/gmj-2016-0003en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectModulation spaceen_US
dc.subjectLorentz spaceen_US
dc.subjectbilinear multiplieren_US
dc.titleThe spaces of bilinear multipliers of weighted Lorentz type modulation spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume23en_US
dc.identifier.issue3en_US
dc.identifier.startpage351en_US
dc.identifier.endpage362en_US
dc.relation.journalGeorgian Mathematical Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record