Show simple item record

dc.contributor.authorKasap, Pelin
dc.contributor.authorSenoglu, Birdal
dc.contributor.authorArslan, Olcay
dc.date.accessioned2020-06-21T13:39:53Z
dc.date.available2020-06-21T13:39:53Z
dc.date.issued2016
dc.identifier.issn0266-4763
dc.identifier.issn1360-0532
dc.identifier.urihttps://doi.org/10.1080/02664763.2015.1125866
dc.identifier.urihttps://hdl.handle.net/20.500.12712/13713
dc.descriptionSenoglu, Birdal/0000-0003-3707-2393; arslan, olcay/0000-0002-7067-4997en_US
dc.descriptionWOS: 000382570500002en_US
dc.description.abstractIn this study, we consider stochastic one-way analysis of covariance model when the distribution of the error terms is long-tailed symmetric. Estimators of the unknown model parameters are obtained by using the maximum likelihood (ML) methodology. Iteratively reweighting algorithm is used to compute the ML estimates of the parameters. We also propose new test statistic based on ML estimators for testing the linear contrasts of the treatment effects. In the simulation study, we compare the efficiencies of the traditional least-squares (LS) estimators of the model parameters with the corresponding ML estimators. We also compare the power of the test statistics based on LS and ML estimators, respectively. A real-life example is given at the end of the study.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.isversionof10.1080/02664763.2015.1125866en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectANCOVAen_US
dc.subjectstochastic covariateen_US
dc.subjectlong-tailed symmetricen_US
dc.subjectrobustnessen_US
dc.subjectiteratively reweighting algorithmen_US
dc.titleStochastic analysis of covariance when the error distribution is long-tailed symmetricen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume43en_US
dc.identifier.issue11en_US
dc.identifier.startpage1977en_US
dc.identifier.endpage1997en_US
dc.relation.journalJournal of Applied Statisticsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record