Basit öğe kaydını göster

dc.contributor.authorDuyar, C.
dc.contributor.authorSagir, B.
dc.contributor.authorOgur, O.
dc.date.accessioned2020-06-21T13:40:10Z
dc.date.available2020-06-21T13:40:10Z
dc.date.issued2016
dc.identifier.issn0354-5180
dc.identifier.urihttps://doi.org/10.2298/FIL1602483D
dc.identifier.urihttps://hdl.handle.net/20.500.12712/13767
dc.descriptionogur, oguz/0000-0002-3206-5330en_US
dc.descriptionWOS: 000376573900025en_US
dc.description.abstractIn this work, following their counterparts for single sequences in classical real analysis we will introduce and examine convergence types and relationship between them for double sequences of functions defined on a subset E with finite measure in real numbers.en_US
dc.language.isoengen_US
dc.publisherUniv Nis, Fac Sci Mathen_US
dc.relation.isversionof10.2298/FIL1602483Den_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDouble function sequenceen_US
dc.subjectalmost everywhere convergence in Pringsheim's senseen_US
dc.subjectconvergence in measure in Pringsheim's senseen_US
dc.subjectuniformly convergence in Pringsheim's senseen_US
dc.titleA New Perspective to Convergence Types in Classical Real Analysis Using Double Sequencesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume30en_US
dc.identifier.issue2en_US
dc.identifier.startpage483en_US
dc.identifier.endpage488en_US
dc.relation.journalFilomaten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster