| dc.contributor.author | Duyar, C. | |
| dc.contributor.author | Sagir, B. | |
| dc.contributor.author | Ogur, O. | |
| dc.date.accessioned | 2020-06-21T13:40:10Z | |
| dc.date.available | 2020-06-21T13:40:10Z | |
| dc.date.issued | 2016 | |
| dc.identifier.issn | 0354-5180 | |
| dc.identifier.uri | https://doi.org/10.2298/FIL1602483D | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12712/13767 | |
| dc.description | ogur, oguz/0000-0002-3206-5330 | en_US |
| dc.description | WOS: 000376573900025 | en_US |
| dc.description.abstract | In this work, following their counterparts for single sequences in classical real analysis we will introduce and examine convergence types and relationship between them for double sequences of functions defined on a subset E with finite measure in real numbers. | en_US |
| dc.language.iso | eng | en_US |
| dc.publisher | Univ Nis, Fac Sci Math | en_US |
| dc.relation.isversionof | 10.2298/FIL1602483D | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Double function sequence | en_US |
| dc.subject | almost everywhere convergence in Pringsheim's sense | en_US |
| dc.subject | convergence in measure in Pringsheim's sense | en_US |
| dc.subject | uniformly convergence in Pringsheim's sense | en_US |
| dc.title | A New Perspective to Convergence Types in Classical Real Analysis Using Double Sequences | en_US |
| dc.type | article | en_US |
| dc.contributor.department | OMÜ | en_US |
| dc.identifier.volume | 30 | en_US |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.startpage | 483 | en_US |
| dc.identifier.endpage | 488 | en_US |
| dc.relation.journal | Filomat | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |