• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of short-circuit faults in high-voltage energy transmission line using energy of instantaneous active power components-based common vector approach

Tarih

2016

Yazar

Yumurtaci, Mehmet
Gokmen, Gokhan
Kocaman, Cagri
Ergin, Semih
Kilic, Osman

Üst veri

Tüm öğe kaydını göster

Özet

The majority of power system faults occur in transmission lines. The classification of these faults in power systems is an important issue. In this paper, the real parameters of a 28 km, 154 kV transmission line between Simav and Demirci in Turkey's electricity transmission network is simulated in MATLAB/Simulink. Wavelet packet transform (WPT) is applied to instantaneous voltage signals. Instantaneous active power components are obtained by multiplying instantaneous currents obtained from a voltage source side with these WPT-based voltage signal components. A new feature vector extraction scheme is employed by calculating the energies of instantaneous active power components. Constructed feature vectors are treated with a classifier for short-circuit faults that occurred in high-voltage energy transmission lines; this is known as the common vector approach (CVA). This is the first implementation of CVA in the classification of short-circuit faults that occurred in high-voltage energy transmission lines. Furthermore, the same feature vector is applied to a support vector machine and artificial neural network for a comparison with the CVA method regarding classification performance and testing duration issues. Additionally, a graphical user interface is designed in MATLAB/GUI. Various noise levels, source frequencies, fault distances, fault inception angles, and fault exposure durations can be investigated with this interface. Classification of short-circuit faults in high-voltage transmission line is achieved by using an offline monitoring methodology. It is concluded that a combination of the proposed feature extraction scheme with the CVA classifier gives substantially high performance for the classification of short circuit faults in transmission line.

Kaynak

Turkish Journal of Electrical Engineering and Computer Sciences

Cilt

24

Sayı

3

Bağlantı

https://doi.org/10.3906/elk-1312-131
https://hdl.handle.net/20.500.12712/13789

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.