• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction of Kinematic Viscosities of Biodiesels Derived from Edible and Non-edible Vegetable Oils by Using Artificial Neural Networks

Tarih

2015

Yazar

Eryilmaz, Tanzer
Yesilyurt, Murat Kadir
Taner, Alper
Celik, Sadiye Ayse

Üst veri

Tüm öğe kaydını göster

Özet

In the present study, the seeds named as wild mustard (Sinapis arvensis L.) and safflower (Carthamus tinctorius L.) were used as feedstocks for production of biodiesels. In order to obtain wild mustard seed oil (WMO) and safflower seed oil (SO), screw press apparatus was used. wild mustard seed oil biodiesel (WMOB) and safflower seed oil biodiesel (SOB) were produced using methanol and NaOH by transesterification process. Various properties of these biodiesels such as density (883.62-886.35 ), specific gravity (0.88442-0.88709), kinematic viscosity (5.75-4.11 ), calorific value (40.63-38.97 ), flash point (171-), water content (328.19-412.15 ), color (2.0-1.8), cloud point [5.8-, pour point [(-3.1)-(-13.1), cold filter plugging point [(-2.0)-], copper strip corrosion (1a-1a) and pH (7.831-7.037) were determined. Furthermore, kinematic viscosities of biodiesels and euro-diesel (ED) were measured at 298.15-373.15 K intervals with 1 K increments. Four different equations were used to predict the viscosities of fuels. Regression analyses were done in MATLAB program, and , correlation constants and root-mean-square error were determined. 1-7-7-3 artificial neural network (ANN) model with a back propagation learning algorithm was developed to predict the viscosities of fuels. The performance of neural network-based model was compared with the performance of viscosity prediction models using same observed data. It was found that ANN model consistently gave better predictions (0.9999 values for all fuels) compared to these models. ANN model was showed 0.34 % maximum errors. Based on the results of this study, ANNs appear to be a promising technique for predicting viscosities of biodiesels.

Kaynak

Arabian Journal For Science and Engineering

Cilt

40

Sayı

12

Bağlantı

https://doi.org/10.1007/s13369-015-1831-6
https://hdl.handle.net/20.500.12712/13945

Koleksiyonlar

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.