Basit öğe kaydını göster

dc.contributor.authorPartal, Turgay
dc.contributor.authorCigizoglu, H. Kerem
dc.contributor.authorKahya, Ercan
dc.date.accessioned2020-06-21T13:46:06Z
dc.date.available2020-06-21T13:46:06Z
dc.date.issued2015
dc.identifier.issn1436-3240
dc.identifier.issn1436-3259
dc.identifier.urihttps://doi.org/10.1007/s00477-015-1061-1
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14241
dc.descriptionKAHYA, ERCAN/0000-0001-9455-6664en_US
dc.descriptionWOS: 000355932400005en_US
dc.description.abstractIn this study, three different neural network algorithms (feed forward back propagation, FFBP; radial basis function; generalized regression neural network) and wavelet transformation were used for daily precipitation predictions. Different input combinations were tested for the precipitation estimation. As a result, the most appropriate neural network model was determined for each station. Also linear regression model performance is compared with the wavelet neural networks models. It was seen that the wavelet FFBP method provided the best performance evaluation criteria. The results indicate that coupling wavelet transforms with neural network can provide significant advantages for estimation process. In addition, global wavelet spectrum provides considerable information about the structure of the physical process to be modeled.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s00477-015-1061-1en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectWavelet transformationen_US
dc.subjectArtificial neural networksen_US
dc.subjectLinear regressionen_US
dc.subjectPrecipitationen_US
dc.subjectEstimationen_US
dc.titleDaily precipitation predictions using three different wavelet neural network algorithms by meteorological dataen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume29en_US
dc.identifier.issue5en_US
dc.identifier.startpage1317en_US
dc.identifier.endpage1329en_US
dc.relation.journalStochastic Environmental Research and Risk Assessmenten_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster