Basit öğe kaydını göster

dc.contributor.authorBektas, Sebahattin
dc.date.accessioned2020-06-21T13:47:18Z
dc.date.available2020-06-21T13:47:18Z
dc.date.issued2015
dc.identifier.issn1982-2170
dc.identifier.urihttps://doi.org/10.1590/S1982-21702015000200019
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14424
dc.descriptionWOS: 000446888800006en_US
dc.description.abstractIn this paper, we present techniques for ellipsoid fitting which are based on minimizing the sum of the squares of the geometric distances between the data and the ellipsoid. The literature often uses "orthogonal fitting" in place of "geometric fitting" or "best-fit". For many different purposes, the best-fit ellipsoid fitting to a set of points is required. The problem of fitting ellipsoid is encountered frequently in theimage processing, face recognition, computer games, geodesy etc. Today, increasing GPS and satellite measurements precision will allow usto determine amore realistic Earth ellipsoid. Several studies have shown that the Earth, other planets, natural satellites, asteroids and comets can be modeled as triaxial ellipsoids Burga and Sima (1980), Iz et al (2011). Determining the reference ellipsoid for the Earth is an important ellipsoid fitting application, because all geodetic calculations are performed on the reference ellipsoid. Algebraic fitting methods solve the linear least squares (LS) problem, and are relatively straightforward and fast. Fitting orthogonal ellipsoid is a difficult issue. Usually, it is impossible to reach a solution with classic LS algorithms. Because they are often faced with the problem of convergence. Therefore, it is necessary to use special algorithms e.g. nonlinear least square algorithms. We propose to use geometric fitting as opposed to algebraic fitting. This is computationally more intensive, but it provides scope for placing visually apparent constraints on ellipsoid parameter estimation and is free from curvature bias Ray and Srivastava (2008).en_US
dc.language.isoengen_US
dc.publisherUniv Federal Parana, Centro Politecnicoen_US
dc.relation.isversionof10.1590/S1982-21702015000200019en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFitting Ellipsoiden_US
dc.subjectOrthogonal Fittingen_US
dc.subjectAlgebraic Fittingen_US
dc.subjectNonlinear Least Square Problemen_US
dc.titleLeast Squares Fitting of Ellipsoid Using Orthogonal Distancesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume21en_US
dc.identifier.issue2en_US
dc.identifier.startpage329en_US
dc.identifier.endpage339en_US
dc.relation.journalBoletim De Ciencias Geodesicasen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster