Basit öğe kaydını göster

dc.contributor.authorToksoy, Erdem
dc.contributor.authorSandikci, Ayse
dc.date.accessioned2020-06-21T13:47:27Z
dc.date.available2020-06-21T13:47:27Z
dc.date.issued2015
dc.identifier.issn1029-242X
dc.identifier.urihttps://doi.org/10.1186/s13660-015-0609-4
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14442
dc.descriptionSandikci, Ayse/0000-0001-5800-5558en_US
dc.descriptionWOS: 000350678400002en_US
dc.description.abstractLet w and co be weight functions on R-d. In this work, we define A(alpha,p)(w,omega)(R-d) to be the vector space of f is an element of L-w(1) (R-d) such that the fractional Fourier transform F(alpha)f belongs to L-omega(p)(R-d) for 1 <= p < infinity. We endow this space with the sum norm parallel to f parallel to A(alpha,p)(w,omega) = parallel to f parallel to(1,w) + parallel to F(alpha)f parallel to(pw) and show that A(alpha,p)(w,omega)(R-d) becomes a Banach space and invariant under time-frequency shifts. Further we show that the mapping y -> T(y)f is continuous from R-d into A(alpha,p)(w,omega)(R-d) the mapping z -> M(z)f is continuous from R-d into A(alpha,p)(w,omega)(R-d) and A(alpha,p)(w,omega)(R-d) is a Banach module over L-w(1)(R-d) with Theta convolution operation. At the end of this work, we discuss inclusion properties of these spaces.en_US
dc.language.isoengen_US
dc.publisherSpringer International Publishing Agen_US
dc.relation.isversionof10.1186/s13660-015-0609-4en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectfractional Fourier transformen_US
dc.subjectconvolutionen_US
dc.subjectBanach moduleen_US
dc.titleOn function spaces with fractional Fourier transform in weighted Lebesgue spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster