dc.contributor.author | Toksoy, Erdem | |
dc.contributor.author | Sandikci, Ayse | |
dc.date.accessioned | 2020-06-21T13:47:27Z | |
dc.date.available | 2020-06-21T13:47:27Z | |
dc.date.issued | 2015 | |
dc.identifier.issn | 1029-242X | |
dc.identifier.uri | https://doi.org/10.1186/s13660-015-0609-4 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12712/14442 | |
dc.description | Sandikci, Ayse/0000-0001-5800-5558 | en_US |
dc.description | WOS: 000350678400002 | en_US |
dc.description.abstract | Let w and co be weight functions on R-d. In this work, we define A(alpha,p)(w,omega)(R-d) to be the vector space of f is an element of L-w(1) (R-d) such that the fractional Fourier transform F(alpha)f belongs to L-omega(p)(R-d) for 1 <= p < infinity. We endow this space with the sum norm parallel to f parallel to A(alpha,p)(w,omega) = parallel to f parallel to(1,w) + parallel to F(alpha)f parallel to(pw) and show that A(alpha,p)(w,omega)(R-d) becomes a Banach space and invariant under time-frequency shifts. Further we show that the mapping y -> T(y)f is continuous from R-d into A(alpha,p)(w,omega)(R-d) the mapping z -> M(z)f is continuous from R-d into A(alpha,p)(w,omega)(R-d) and A(alpha,p)(w,omega)(R-d) is a Banach module over L-w(1)(R-d) with Theta convolution operation. At the end of this work, we discuss inclusion properties of these spaces. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Springer International Publishing Ag | en_US |
dc.relation.isversionof | 10.1186/s13660-015-0609-4 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | fractional Fourier transform | en_US |
dc.subject | convolution | en_US |
dc.subject | Banach module | en_US |
dc.title | On function spaces with fractional Fourier transform in weighted Lebesgue spaces | en_US |
dc.type | article | en_US |
dc.contributor.department | OMÜ | en_US |
dc.relation.journal | Journal of Inequalities and Applications | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |