• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Classification of Breaking News Taken from the Online News Sites

Date

2015

Author

Kilic, Erdal
Tavus, Mustafa Resit
Karhan, Zehra

Metadata

Show full item record

Abstract

In this study, we aimed to provide access to the breaking news depending on the category to which the user wants. First, accessing to news in certain categories are provided from the news provider by using RSS (Really Simple Syndication). Preprocessing is implemented by cleaning xml tags and punctuation which can cause illusions before the content are obtained on datum. The features which can represent our classes in categories were determined by applying the methods in data mining for content after preprocessing phase. In the last step of process, Classification of category process is done by obtaining breaking news' content taken as online. In the phase of classification, Categorization were implemented with features which represent each category and by using C4.5i Naive Bayes and SMO (Sequential minimal optimization) functions, respectively. The performance rates in the usage methods and classification rates are shown in comparison.

Source

2015 23Rd Signal Processing and Communications Applications Conference (Siu)

URI

https://hdl.handle.net/20.500.12712/14567

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.