Basit öğe kaydını göster

dc.contributor.authorKucuk, Hanife
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2020-06-21T13:51:05Z
dc.date.available2020-06-21T13:51:05Z
dc.date.issued2015
dc.identifier.isbn978-1-4673-7386-9
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14574
dc.description23nd Signal Processing and Communications Applications Conference (SIU) -- MAY 16-19, 2015 -- Inonu Univ, Malatya, TURKEYen_US
dc.descriptionWOS: 000380500900396en_US
dc.description.abstractIn this study, SVM (Support Vector Machine) algorithm is used for the diagnosis of ALS which is the most common type of motor neuron disease. Before classification of EMG data with SVM (Support Vector Machine); pre-processing, segmentation, feature extraction and clustering stages of data are completed. In the stage of clustering, hybrid and hierarchical clustering methods are employed. After that, feature vectors in time and frequency domains and their different combinations (a total of 11 feature vectors) are fed to the SVM and the obtained results are observed. It is understood that the advantages of clustering methods dependent on the feature vectors; multiple feature vectors provide high performance in the diagnosis of ALS disease and exhibit much lower discrepancy.en_US
dc.description.sponsorshipDept Comp Engn & Elect & Elect Engn, Elect & Elect Engn, Bilkent Univen_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectALSen_US
dc.subjectSVMen_US
dc.subjectEMGen_US
dc.subjecthierarchical clusteringen_US
dc.titleClassification of ALS Disease Using Support Vector Machinesen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.identifier.startpage1664en_US
dc.identifier.endpage1667en_US
dc.relation.journal2015 23Rd Signal Processing and Communications Applications Conference (Siu)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster