Show simple item record

dc.contributor.authorSimsek, H.
dc.contributor.authorCemek, B.
dc.contributor.authorOdabas, M. S.
dc.contributor.authorRahman, S.
dc.date.accessioned2020-06-21T13:51:16Z
dc.date.available2020-06-21T13:51:16Z
dc.date.issued2015
dc.identifier.issn1210-0552
dc.identifier.urihttps://doi.org/10.14311/NNW.2015.25.025
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14642
dc.descriptionSimsek, Halis/0000-0001-9031-5142;en_US
dc.descriptionWOS: 000365835300002en_US
dc.description.abstractNutrient concentrations in runoff from beef cattle feedlots were estimated using two different adaptive network-based fuzzy inference systems (ANFIS), which were: (1) grid partition (ANFIS-GP) and (2) subtractive clustering based fuzzy inference system (ANFIS-SC). The input parameters were pH and electrical conductivity (EC); and the output parameters were total Kjeldahl nitrogen (TKN), ammonium-N (NH4-N), orthophosphate (ortho-P), and potassium (K). Models performances were evaluated based on root mean square error, mean absolute error, mean bias error, and determination coefficient statistics. For the same dataset, the ANFIS model outputs were also compared with a previously published nutrient concentration predictability model for runoff using artificial neural network (ANN) outputs. Results showed that both ANFIS-GP and ANFIS-SC models successfully predicted the runoff nutrient concentration. The comparison results revealed that the ANFIS-GP model performed slightly better than ANFIS-SC model in estimating TKN, NH4-N, ortho-P, and K. When compared with the ANN model for the same dataset, ANFIS outperformed ANN in nutrient concentration prediction in runoff.en_US
dc.language.isoengen_US
dc.publisherAcad Sciences Czech Republic, Inst Computer Scienceen_US
dc.relation.isversionof10.14311/NNW.2015.25.025en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectnutrient concentrationen_US
dc.subjectcattle feedloten_US
dc.subjectgrid partition based fuzzy inference system (ANFIS-GP)en_US
dc.subjectsubtractive clustering based fuzzy inference system (ANFIS-SC)en_US
dc.titleEstimation of Nutrient Concentrations in Runoff From Beef Cattle Feedlot Using Adaptive Neuro-Fuzzy Inference Systemsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume25en_US
dc.identifier.issue5en_US
dc.identifier.startpage501en_US
dc.identifier.endpage518en_US
dc.relation.journalNeural Network Worlden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record