Basit öğe kaydını göster

dc.contributor.authorKucuk, Hanife
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2020-06-21T13:51:52Z
dc.date.available2020-06-21T13:51:52Z
dc.date.issued2015
dc.identifier.isbn978-1-5090-2386-8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/14779
dc.descriptionMedical Technologies National Conference (TIPTEKNO) -- OCT 27-29, 2016 -- Antalya, TURKEYen_US
dc.descriptionWOS: 000455003600045en_US
dc.description.abstractThis study includes a classification structure consisting of second part for the automatic diagnosis of the neuromuscular disease of ALS (Amyotrophic Lateral Sclerosis) and myopathy being a muscular disease. In this study feature vectors containing time domain parameters, frequency domain parameters (a total of 25 feature vectors) as well as feature vectors composed of combination of these parameters were used. In the classification stage, Support Vector Machines (SVM), K-Nearest Neighbors (K-NN) and Discriminant Analysis (DA) algorithms were employed., Experimental results showed that the multiple feature vectors proved to be more successful compared to the individual feature vectors. It is understood with this study; the classification performance depends highly on separability of feature vectors between different classes.en_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectEMGen_US
dc.subjectALSen_US
dc.subjectDVMen_US
dc.subjectK-NNen_US
dc.subjectDAen_US
dc.titleNeuromuscular Disease Diagnosis of SVM, K-NN and DA Algorithm Based Classification Part-IIen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.relation.journal2016 Medical Technologies National Conference (Tiptekno)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster