• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new adaptive support vector machine for diagnosis of diseases

Date

2014

Author

Gurbuz, Emre
Kilic, Erdal

Metadata

Show full item record

Abstract

Automatic disease diagnosis systems have been used to treat diseases for many years. The data used in the construction of these systems require correct classification. Therefore, previous literature has proposed a variety of methods. This paper develops a general-purposed, fast and adaptive automatic disease diagnosis system, using the information generated by the newly-designed classifier, which makes decisions with a simple rule base comprising the rules in if-then' form. This newly-proposed methodology is based on the support vector machine (SVM), a powerful classification algorithm. In the proposed method of this study, we added a feature of adaptivity to an SVM. In order to increase the success rate and decrease the decision-making time, the bias value of the standard SVM is changed in an adaptive structure. This process introduces a new kind of SVM, adaptive SVM', seeking a diagnosis of diseases in a more successful way. During the training and test operations of this newly designed system, we used diabetes and breast cancer datasets, acquired from the medical database of California University. This newly proposed methodology has 100% correct classification rates on both diabetes and breast cancer datasets.

Source

Expert Systems

Volume

31

Issue

5

URI

https://doi.org/10.1111/exsy.12051
https://hdl.handle.net/20.500.12712/14894

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.