• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Prediction Speed of Hand Open-Close By Using Neural Network

Date

2014

Author

Tepe, Cengiz
Senyer, Nurettin
Eminoglu, Ilyas

Metadata

Show full item record

Abstract

In this paper, an prediction speed method of hand open-close by using the Artificial Neural Network (ANN) surface electromyography (sEMG) signal is presented. The first step of this method is to analyze sEMG signal detected from the subject's right upper forearm and extract features using the mean absolute value (MAV), the root mean square (RMS), the variance (VAR), the standart deviation (STD), the median frekans of power spectrum (MDF), the mean frekans of PS (MNF), the maximum frekans of PS (MAXF). The second step is to import the feature values into an ANN to identify the speed of hand open-close (SHOC). Based on the results of experiments, it is concluded that this method is effective in prediction of SHOC.

Source

2014 22Nd Signal Processing and Communications Applications Conference (Siu)

URI

https://hdl.handle.net/20.500.12712/15341

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.