Basit öğe kaydını göster

dc.contributor.authorKayhan, Gokhan
dc.contributor.authorOzdemir, Ali Ekber
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2020-06-21T14:05:25Z
dc.date.available2020-06-21T14:05:25Z
dc.date.issued2013
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttps://doi.org/10.1007/s00521-012-1053-8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/15826
dc.descriptionWOS: 000319769300040en_US
dc.description.abstractThis paper reviews some frequently used methods to initialize an radial basis function (RBF) network and presents systematic design procedures for pre-processing unit(s) to initialize RBF network from available input-output data sets. The pre-processing units are computationally hybrid two-step training algorithms that can be named as (1) construction of initial structure and (2) coarse-tuning of free parameters. The first step, the number, and the locations of the initial centers of RBF network can be determined. Thus, an orthogonal least squares algorithm and a modified counter propagation network can be employed for this purpose. In the second step, a coarse-tuning of free parameters is achieved by using clustering procedures. Thus, the Gustafson-Kessel and the fuzzy C-means clustering methods are evaluated for the coarse-tuning. The first two-step behaves like a pre-processing unit for the last stage (or fine-tuning stage-a gradient descent algorithm). The initialization ability of the proposed four pre-processing units (modular combination of the existing methods) is compared with three non-linear benchmarks in terms of root mean square errors. Finally, the proposed hybrid pre-processing units may initialize a fairly accurate, IF-THEN-wise readable initial model automatically and efficiently with a minimum user inference.en_US
dc.description.sponsorshipOndokuz Mayis University Research Foundation GrantOndokuz Mayis University [PYO.MUH.1906.10.001-BAL-LAB]en_US
dc.description.sponsorshipThis work has been partly supported by Ondokuz Mayis University Research Foundation Grant (PYO.MUH.1906.10.001-BAL-LAB).en_US
dc.language.isoengen_US
dc.publisherSpringer London Ltden_US
dc.relation.isversionof10.1007/s00521-012-1053-8en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCounter propagation network (CPN)en_US
dc.subjectFuzzy C-means (FCM)en_US
dc.subjectGustafson-Kessel (GK)en_US
dc.subjectRadial basis function (RBF)en_US
dc.subjectHybrid training and modelingen_US
dc.subjectPartition validationsen_US
dc.titleReviewing and designing pre-processing units for RBF networks: initial structure identification and coarse-tuning of free parametersen_US
dc.typereviewen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume22en_US
dc.identifier.issue07.Augen_US
dc.identifier.startpage1655en_US
dc.identifier.endpage1666en_US
dc.relation.journalNeural Computing & Applicationsen_US
dc.relation.publicationcategoryDiğeren_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster