• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A new classification for power quality events in distribution systems

Date

2013

Author

Ozgonenel, Okan
Yalcin, Turgay
Guney, Irfan
Kurt, Unal

Metadata

Show full item record

Abstract

This paper presents the performance evaluation of support vector machine (SVM) with one against all (OAA) and different classification methods for power quality monitoring. The first aim of this study is to investigate EEMD (ensemble empirical mode decomposition) performance and to compare it with classical EMD (empirical mode decomposition) for feature vector extraction and selection of power quality disturbances. Feature vectors are extracted from the sampled power signals with the Hilbert Huang Transform (HHT) technique. HHT is a combination of EEMD and Hilbert transform (HT). The outputs of HHT are intrinsic mode functions (IMFs), instantaneous frequency (IF), and instantaneous amplitude (IA). Characteristic features are obtained from first IMFs, IF, and IA. The ten features-i.e., the mean, standard deviation, singular values, maxima and minima-of both IF and IA are then calculated. These features are normalized along with the inputs of SVM and other classifiers. Crown Copyright (c) 2012 Published by Elsevier B.V. All rights reserved.

Source

Electric Power Systems Research

Volume

95

URI

https://doi.org/10.1016/j.epsr.2012.09.007
https://hdl.handle.net/20.500.12712/16016

Collections

  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.