Basit öğe kaydını göster

dc.contributor.authorOzdemir, Ali Ekber
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2020-06-21T14:16:30Z
dc.date.available2020-06-21T14:16:30Z
dc.date.issued2013
dc.identifier.isbn978-605-01-0504-9
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16041
dc.description8th International Conference on Electrical and Electronics Engineering (ELECO) -- NOV 28-30, 2013 -- Bursa, TURKEYen_US
dc.descriptionWOS: 000333752200132en_US
dc.description.abstractThis paper presents a systematic construction of linearly weighted Gaussian radial basis function (RBF) neural network. The proposed method is computationally a two-stage hybrid training algorithm. The first stage of the hybrid algorithm is a pre-processing unit which generates a coarsely-tuned RBF network. The second stage is a fine-tuning phase. The coarsely-tuned RBF network is then optimized by using a two-pass training algorithm. In forward-pass, the output weights of RBF are calculated by the Levenberg - Marquardt (LM) algorithm while the rest of the parameters is remained fixed. Similarly, in backward-pass, the free parameters of basis function (center and width of each node) are adjusted by gradient descent (GD) algorithm while the output weights of RBF are remained fixed. Hence, the effectiveness of the proposed method for an RBF network is demonstrated with simulations.en_US
dc.description.sponsorshipChamber Elect Engineers Bursa Branch, Istanbul Techn Univ, Fac Elect & Elect Engn, Uludag Univ, Dept Elect & Elect Engn, IEEE, Reg 8, IEEE Turkey Sect, CAS Chapter, Sci & Technol Res Council Turkeyen_US
dc.language.isoengen_US
dc.publisherIeeeen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA two-pass hybrid training algorithm for RBF networksen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.identifier.startpage617en_US
dc.identifier.endpage620en_US
dc.relation.journal2013 8Th International Conference on Electrical and Electronics Engineering (Eleco)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster