Basit öğe kaydını göster

dc.contributor.authorKucuk, Hanife
dc.contributor.authorTepe, Cengiz
dc.contributor.authorEminoglu, Ilyas
dc.date.accessioned2020-06-21T14:16:35Z
dc.date.available2020-06-21T14:16:35Z
dc.date.issued2013
dc.identifier.isbn978-1-4673-5563-6; 978-1-4673-5562-9
dc.identifier.issn2165-0608
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16073
dc.description21st Signal Processing and Communications Applications Conference (SIU) -- APR 24-26, 2013 -- CYPRUSen_US
dc.descriptionWOS: 000325005300081en_US
dc.description.abstractElectromyography (EMG) is a medical measurement system. EMG measurements are required for the diagnosis of some diseases and used in order to facilitate physicians' work. In this study, MUAPs' in an EMG data set that contains both healthy and Amyotrophic Lateral Sclerosis (ALS) disease subjects are represented in time domain and frequency domain with a total of 10 feature vectors. Two pattern recognition methods, namely k-Nearest Neighbor (k-NN) and Support vector machine (SVM) classifier are employed and compared. In terms of classification accuracy, k-NN classifier give slightly higher success rate than SVM classifier for the existing data set and feature vectors.en_US
dc.language.isoturen_US
dc.publisherIeeeen_US
dc.relation.ispartofseriesSignal Processing and Communications Applications Conference
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectk-NNen_US
dc.subjectSVMen_US
dc.subjectALSen_US
dc.subjectEMGen_US
dc.titleClassification of EMG Signals by K-Nearest Neighbor Algorithm and Support Vector Machine Methodsen_US
dc.typeconferenceObjecten_US
dc.contributor.departmentOMÜen_US
dc.relation.journal2013 21St Signal Processing and Communications Applications Conference (Siu)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster