Show simple item record

dc.contributor.authorYuzbasi, Figen
dc.contributor.authorEren, Senol
dc.date.accessioned2020-06-21T14:16:39Z
dc.date.available2020-06-21T14:16:39Z
dc.date.issued2013
dc.identifier.issn1221-8421
dc.identifier.urihttps://doi.org/10.2478/v10157-012-0049-0
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16097
dc.descriptionWOS: 000324382600004en_US
dc.description.abstractLet R be a ring and M be a left R-module. M is called a cofinitely generalized (weak) delta-supplemented module or briefly a delta-CGS-module (delta-CGWS-module) if every cofinite submodule of M has a generalized (weak) delta-supplement in M. In this paper, we give various properties of these modules. It is shown that (1) The class of cofinitely generalized (weak) delta-supplemented modules are closed under taking homomorphic images, arbitrary sums, generalized delta-covers and closed under extensions. (2) M is a generalized cofinitely delta-semiperfect module if and only if M is a cofinitely generalized delta-supplemented by generalized delta-supplements which have generalized projective delta-covers.en_US
dc.language.isoengen_US
dc.publisherUniv Al I Cuza, Fac Mathen_US
dc.relation.isversionof10.2478/v10157-012-0049-0en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectcofinitely generalized delta-supplemented moduleen_US
dc.subjectcofinitely generalized weak delta-supplemented moduleen_US
dc.subjectgeneralized cofinitely delta-semiperfect moduleen_US
dc.subjectgeneralized projective delta-coveren_US
dc.titleGENERALIZED COFINITELY delta-SEMIPERFECT MODULESen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume59en_US
dc.identifier.issue2en_US
dc.identifier.startpage269en_US
dc.identifier.endpage280en_US
dc.relation.journalAnalele Stiintifice Ale Universitatii Al I Cuza Din Iasi-Serie Noua-Matematicaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record