Show simple item record

dc.contributor.authorKulak, Oznur
dc.contributor.authorGurkanli, A. Turan
dc.date.accessioned2020-06-21T14:16:39Z
dc.date.available2020-06-21T14:16:39Z
dc.date.issued2013
dc.identifier.issn1029-242X
dc.identifier.urihttps://doi.org/10.1186/1029-242X-2013-259
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16100
dc.descriptionWOS: 000323608300003en_US
dc.description.abstractLet 1 <= p(1), p(2) < infinity, 0 < p(3) <= infinity and omega(1), omega(2), omega(3) be weight functions on R-n. Assume that omega(1), omega(2) are slowly increasing functions. We say that a bounded function m(xi, eta) defined on R-n x R-n is a bilinear multiplier on R-n of type (p(1), omega(1); p(2), omega(2); p(3), omega(3)) (shortly (omega(1), omega(2), omega(3))) if B-m(f, g)(x) = integral(Rn) integral(Rn) (f) over cap(xi)(g) over cap(eta)m(xi, eta)e(2 pi i <xi+eta x >) d xi d eta is a bounded bilinear operator from L-omega 1(p1) (R-n) x L-omega 2(p2) (R-n) to L-omega 3(p3) (R-n). We denote by BM(p(1), omega(1); p(2), omega(2); p(3), omega(3)) (shortly BM(omega(1), omega(2), omega(3))) the vector space of bilinear multipliers of type (omega(1), omega(2), omega(3)). In this paper first we discuss some properties of the space BM(omega(1), omega(2), omega(3)). Furthermore, we give some examples of bilinear multipliers. At the end of this paper, by using variable exponent Lebesgue spaces L-p1(x)(R-n), L-p2(x)(R-n) and L-p3((x))(R-n), we define the space of bilinear multipliers from L-p1((x))(R-n) x L-p2((x))(R-n) to L-p3((x))(R-n) and discuss some properties of this space.en_US
dc.description.sponsorshipOndokuz Mayis UniversityOndokuz Mayis University [PYO.FEN.1904.13.002]en_US
dc.description.sponsorshipThis research was supported by the Ondokuz Mayis University (PYO.FEN.1904.13.002).en_US
dc.language.isoengen_US
dc.publisherSpringeropenen_US
dc.relation.isversionof10.1186/1029-242X-2013-259en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectbilinear multipliersen_US
dc.subjectweighted Lebesgue spaceen_US
dc.subjectvariable exponent Lebesgue spaceen_US
dc.titleBilinear multipliers of weighted Lebesgue spaces and variable exponent Lebesgue spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalJournal of Inequalities and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record