Basit öğe kaydını göster

dc.contributor.authorTerzi, Erol
dc.contributor.authorCengiz, Mehmet Ali
dc.date.accessioned2020-06-21T14:16:42Z
dc.date.available2020-06-21T14:16:42Z
dc.date.issued2013
dc.identifier.issn1748-670X
dc.identifier.issn1748-6718
dc.identifier.urihttps://doi.org/10.1155/2013/579214
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16113
dc.descriptionWOS: 000322248800001en_US
dc.descriptionPubMed: 23935702en_US
dc.description.abstractWe investigate a Bayesian hierarchical model for the analysis of categorical longitudinal data from sedation measurement for Magnetic Resonance Imaging (MRI) and Computerized Tomography (CT). Data for each patient is observed at different time points within the time up to 60 min. A model for the sedation level of patients is developed by introducing, at the first stage of a hierarchical model, a multinomial model for the response, and then subsequent terms are introduced. To estimate the model, we use the Gibbs sampling given some appropriate prior distributions.en_US
dc.language.isoengen_US
dc.publisherHindawi Ltden_US
dc.relation.isversionof10.1155/2013/579214en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.titleBayesian Hierarchical Modeling for Categorical Longitudinal Data from Sedation Measurementsen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.relation.journalComputational and Mathematical Methods in Medicineen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster