• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
  •   DSpace Home
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The effects of alpha-tocopherol on oxidative damage and serum levels of Clara cell protein 16 in aspiration pneumonitis induced by bile acids

Date

2013

Author

Alacam, H.
Karli, R.
Alici, O.
Avci, B.
Guzel, A.
Kozan, A.
Sahin, M.

Metadata

Show full item record

Abstract

Our aim in this study is to examine the effects of alpha-tocopherol (AT) on rats with aspiration pneumonitis induced with bile acids (BAs). The animals were divided in to four groups, namely saline group (n = 7), saline + AT group (n = 7), BA group (n = 7), and BA + AT group (n = 7). Saline and BA groups aspirated intratracheally with 1 ml/kg saline and 1 ml/kg bile acids, respectively. AT was given at 20 mg/kg/day dosage for 7 days to the groups. AT group was given 20 mg/kg/day AT for 7 days. Malondialdehyde (MDA), Clara cell protein 16 (CC-16), catalase (CAT), superoxide dismutase (SOD), as well as peribronchial inflammatory cell infiltration, alveolar septal infiltration, alveolar edema, alveolar exudate, alveolar histiocytes, and necrosis were evaluated. The CAT activity of the BA group was significantly lower than the saline group. In the BA + AT group, there was a significant increase in SOD and CAT activities when compared with that of the BA group. The CC-16 and MDA contents in the BA group were significantly higher than in the saline group. The CC-16 and MDA levels of the BA + AT group were significantly lower than BA group. Histopathologic changes were seen in BA group, and there was a significant decrease in the BA + AT group. In conclusion, AT might be beneficial in the treatment of aspiration pneumonitis induced by BAs because AT decreased oxidative damage and resulted in a decrease in CC-16 levels.

Source

Human & Experimental Toxicology

Volume

32

Issue

1

URI

https://doi.org/10.1177/0960327112459531
https://hdl.handle.net/20.500.12712/16169

Collections

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@Ondokuz Mayıs

by OpenAIRE

Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Library || Ondokuz University || OAI-PMH ||

Ondokuz Mayıs University, Samsun, Turkey
If you find any errors in content, please contact:

Creative Commons License
Ondokuz University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.