• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
  •   DSpace Ana Sayfası
  • Araştırma Çıktıları | TR-Dizin | WoS | Scopus | PubMed
  • WoS İndeksli Yayınlar Koleksiyonu
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A fast and adaptive automated disease diagnosis method with an innovative neural network model

Tarih

2012

Yazar

Alkim, Erdem
Gurbuz, Emre
Kilic, Erdal

Üst veri

Tüm öğe kaydını göster

Özet

Automatic disease diagnosis systems have been used for many years. While these systems are constructed, the data used needs to be classified appropriately. For this purpose, a variety of methods have been proposed in the literature so far. As distinct from the ones in the literature, in this study, a general-purpose, fast and adaptive disease diagnosis system is developed. This newly proposed method is based on Learning Vector Quantization (LVQ) artificial neural networks which are powerful classification algorithms. In this study, the classification ability of LVQ networks is developed by embedding a reinforcement mechanism into the LVQ network in order to increase the success rate of the disease diagnosis method and reduce the decision time. The parameters of the reinforcement learning mechanism are updated in an adaptive way in the network. Thus, the loss of time due to incorrect selection of the parameters and decrement in the success rate are avoided. After the development process mentioned, the newly proposed classification technique is named "Adaptive LVQ with Reinforcement Mechanism (ALVQ-RM)". The method proposed handles data with missing values. To prove that this method did not offer a special solution for a particular disease, because of its adaptive structure, it is used both for diagnosis of breast cancer, and for diagnosis of thyroid disorders, and a correct diagnosis rate after replacing missing values using median method over 99.5% is acquired in average for both diseases. In addition, the success rate of determination of the parameters of the proposed "LVQ with Reinforcement Mechanism (LVQ-RM)" classifier, and how this determination affected the required number of iterations for acquiring that success rate are discussed with comparison to the other studies. (c) 2012 Elsevier Ltd. All rights reserved.

Kaynak

Neural Networks

Cilt

33

Bağlantı

https://doi.org/10.1016/j.neunet.2012.04.010
https://hdl.handle.net/20.500.12712/16389

Koleksiyonlar

  • PubMed İndeksli Yayınlar Koleksiyonu [6144]
  • Scopus İndeksli Yayınlar Koleksiyonu [14046]
  • WoS İndeksli Yayınlar Koleksiyonu [12971]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@Ondokuz Mayıs

by OpenAIRE

Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Kütüphane || Ondokuz Mayıs Üniversitesi || OAI-PMH ||

Ondokuz Mayıs Üniversitesi, Samsun, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
Ondokuz Mayıs Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@Ondokuz Mayıs:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.