Show simple item record

dc.contributor.authorSandikci, Ayse
dc.date.accessioned2020-06-21T14:18:17Z
dc.date.available2020-06-21T14:18:17Z
dc.date.issued2012
dc.identifier.issn1662-9981
dc.identifier.issn1662-999X
dc.identifier.urihttps://doi.org/10.1007/s11868-012-0051-z
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16405
dc.descriptionSandikci, Ayse/0000-0001-5800-5558en_US
dc.descriptionWOS: 000209056300002en_US
dc.description.abstractThis paper is a study on a new kind modulation spaces M(P, Q)(R-d) and A(P, Q, r)(R-d) for indices in the range 1 < P < infinity, 1 <= Q < infinity and 1 <= r < infinity, modelled on Lorentz mixed norm spaces instead of mixed norm L-P spaces as the spaces M-m(p,q) (R-d) (Feichtinger in Modulation spaces on locally compact Abelian groups, 1983; Grochenig in Foundations of Time-Frequency Analysis. Birkh auser, Boston, 2001), and Lorentz spaces as the spaces M(p, q)(R-d) (Gurkanhin J Math Kyoto Univ 46:595-616, 2006). First, we prove the main properties of these spaces. Later, we describe the dual spaces and determine the multiplier spaces for both of them. Moreover, we investigate the boundedness of Weyl operators and localization operators on M(P, Q)(R-d). Finally, we give an interpolation theorem for M(P, Q)(R-d).en_US
dc.language.isoengen_US
dc.publisherSpringer Basel Agen_US
dc.relation.isversionof10.1007/s11868-012-0051-zen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGabor transformen_US
dc.subjectLorentz mixed norm spaceen_US
dc.subjectmodulation spaceen_US
dc.subjectWeyl operatoren_US
dc.subjectMultiplieren_US
dc.titleOn Lorentz mixed normed modulation spacesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume3en_US
dc.identifier.issue3en_US
dc.identifier.startpage263en_US
dc.identifier.endpage281en_US
dc.relation.journalJournal of Pseudo-Differential Operators and Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record