Basit öğe kaydını göster

dc.contributor.authorBingol, Deniz
dc.contributor.authorHercan, Merve
dc.contributor.authorElevli, Sermin
dc.contributor.authorKilic, Erdal
dc.date.accessioned2020-06-21T14:27:48Z
dc.date.available2020-06-21T14:27:48Z
dc.date.issued2012
dc.identifier.issn0960-8524
dc.identifier.issn1873-2976
dc.identifier.urihttps://doi.org/10.1016/j.biortech.2012.02.084
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16555
dc.descriptionBingol, Deniz/0000-0002-9396-2422;en_US
dc.descriptionWOS: 000302971200015en_US
dc.descriptionPubMed: 22425399en_US
dc.description.abstractIn this study, Response Surface Methodology (RSM) and Artificial Neural Network (ANN) were employed to develop an approach for the evaluation of heavy metal biosorption process. A batch sorption process was performed using Nigella saliva seeds (black cumin), a novel and natural biosorbent, to remove lead ions from aqueous solutions. The effects of process variables which are pH, biosorbent mass, and temperature, on the sorbed amount of lead were investigated through two-levels, three-factors central composite design (CCD). Same design was also utilized to obtain a training set for ANN. The results of two methodologies were compared for their predictive capabilities in terms of the coefficient of determination-R-2 and root mean square error-RMSE based on the validation data set. The results showed that the ANN model is much more accurate in prediction as compared to CCD. (C) 2012 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.isversionof10.1016/j.biortech.2012.02.084en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectResponse surface methodology (RSM)en_US
dc.subjectArtificial neural network (ANN)en_US
dc.subjectBlack cuminen_US
dc.subjectLead removalen_US
dc.subjectBiosorptionen_US
dc.titleComparison of the results of response surface methodology and artificial neural network for the biosorption of lead using black cuminen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume112en_US
dc.identifier.startpage111en_US
dc.identifier.endpage115en_US
dc.relation.journalBioresource Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster