Basit öğe kaydını göster

dc.contributor.authorAksahin, Mehmet
dc.contributor.authorAydin, Serap
dc.contributor.authorFirat, Hikmet
dc.contributor.authorErogul, Osman
dc.date.accessioned2020-06-21T14:28:05Z
dc.date.available2020-06-21T14:28:05Z
dc.date.issued2012
dc.identifier.issn0148-5598
dc.identifier.issn1573-689X
dc.identifier.urihttps://doi.org/10.1007/s10916-010-9453-8
dc.identifier.urihttps://hdl.handle.net/20.500.12712/16650
dc.descriptionAYDIN, SERAP/0000-0002-4026-0750; FIRAT, ibrahim Hikmet/0000-0003-2594-4887en_US
dc.descriptionWOS: 000303823600014en_US
dc.descriptionPubMed: 20703741en_US
dc.description.abstractIn the present study, both linear and nonlinear EEG synchronization methods so called Coherence Function (CF) and Mutual Information (MI) are performed to obtain high quality signal features in discriminating the Central Sleep Apnea (CSA) and Obstructive Sleep Apnea (OSA) from controls. For this purpose, sleep EEG series recorded from patients and healthy volunteers are classified by using several Feed Forward Neural Network (FFNN) architectures with respect to synchronic activities between C3 and C4 recordings. Among the sleep stages, stage2 is considered in tests. The NN approaches are trained with several numbers of neurons and hidden layers. The results show that the degree of central EEG synchronization during night sleep is closely related to sleep disorders like CSA and OSA. The MI and CF give us cooperatively meaningful information to support clinical findings. Those three groups determined with an expert physician can be classified by addressing two hidden layers with very low absolute error where the average area of CF curves ranged form 0 to 10 Hz and the average MI values are assigned as two features. In a future work, these two features can be combined to create an integrated single feature for error free apnea classification.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1007/s10916-010-9453-8en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSleep EEGen_US
dc.subjectApneaen_US
dc.subjectEEG classificationen_US
dc.subjectMutual informationen_US
dc.subjectCoherence functionen_US
dc.titleArtificial Apnea Classification with Quantitative Sleep EEG Synchronizationen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume36en_US
dc.identifier.issue1en_US
dc.identifier.startpage139en_US
dc.identifier.endpage144en_US
dc.relation.journalJournal of Medical Systemsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster