Basit öğe kaydını göster

dc.contributor.authorTuran, N. Gamze
dc.contributor.authorMesci, Basak
dc.contributor.authorOzgonenel, Okan
dc.date.accessioned2020-06-21T14:39:50Z
dc.date.available2020-06-21T14:39:50Z
dc.date.issued2011
dc.identifier.issn1385-8947
dc.identifier.issn1873-3212
dc.identifier.urihttps://doi.org/10.1016/j.cej.2011.05.005
dc.identifier.urihttps://hdl.handle.net/20.500.12712/17110
dc.descriptionWOS: 000293664600039en_US
dc.description.abstractIn this present work, artificial neural networks (ANN) are applied for the prediction of percentage adsorption efficiency for the removal of Cu(II) ions from industrial leachate by pumice. The effect of operational parameters such as initial pH, adsorbent dosage, temperature, and contact time is studied to optimize the conditions for maximum removal of Cu(II) ions. The model is first developed using a three layer feed forward backpropagation network with 4, 8 and 4 neurons in first, second and third layers, respectively. Furthermore, radial basis function (RBF) network is also proposed and its performance is compared to traditional network type. A comparison between the ANN models presents high correlation coefficient (R-2 = 0.999) and shows that the RBF network model is able to predict the removal of Cu(II) from industrial leachate more accurately. Crown Copyright (c) 2011 Published by Elsevier B.V. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherElsevier Science Saen_US
dc.relation.isversionof10.1016/j.cej.2011.05.005en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networks (ANN)en_US
dc.subjectRBF networksen_US
dc.subjectOptimizationen_US
dc.subjectAdsorptionen_US
dc.subjectCopperen_US
dc.subjectPumiceen_US
dc.titleThe use of artificial neural networks (ANN) for modeling of adsorption of Cu(II) from industrial leachate by pumiceen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume171en_US
dc.identifier.issue3en_US
dc.identifier.startpage1091en_US
dc.identifier.endpage1097en_US
dc.relation.journalChemical Engineering Journalen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster