Show simple item record

dc.contributor.authorSandikci, Ayse
dc.contributor.authorGurkanli, A. Turan
dc.date.accessioned2020-06-21T14:41:51Z
dc.date.available2020-06-21T14:41:51Z
dc.date.issued2011
dc.identifier.issn0252-9602
dc.identifier.issn1572-9087
dc.identifier.urihttps://doi.org/10.1016/S0252-9602(11)60216-6
dc.identifier.urihttps://hdl.handle.net/20.500.12712/17451
dc.descriptionSandikci, Ayse/0000-0001-5800-5558en_US
dc.descriptionWOS: 000287165300016en_US
dc.description.abstractLet g be a non-zero rapidly decreasing function and w be a weight function. In this article in analog to modulation space, we define the space M(p, q, w)(R-d) to be the subspace of tempered distributions f E S'(R-d) such that the Gabor transform V-g(f) of f is in the weighted Lorentz space L(p, q, wd mu) (R-2d). We endow this space with a suitable norm and show that it becomes a Banach space and invariant under time frequence shifts for 1 <= p, q < infinity. We also investigate the embeddings between these spaces and the dual space of M(p, q, w)(R-d). Later we define the space S(p, q, r, w, omega)(R-d) for 1 < p < infinity, 1 <= q <= infinity. We endow it with a sum norm and show that it becomes a Banach convolution algebra. We also discuss some properties of S(p, q, r, w, omega)(R-d). At the end of this article, we characterize the multipliers of the spaces M(p,q, w)(R-d) and S(p,q,r,w,omega)(R-d).en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.isversionof10.1016/S0252-9602(11)60216-6en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGabor transformen_US
dc.subjectweigted Lorentz spaceen_US
dc.subjectmultiplieren_US
dc.titleGABOR ANALYSIS OF THE SPACES M (p, q, w) (R-d) AND S (p, q, r, w, omega) (R-d)en_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume31en_US
dc.identifier.issue1en_US
dc.identifier.startpage141en_US
dc.identifier.endpage158en_US
dc.relation.journalActa Mathematica Scientiaen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record