Show simple item record

dc.contributor.authorAl-rabtah, Adel
dc.contributor.authorErturk, Vedat Suat
dc.contributor.authorMomani, Shaher
dc.date.accessioned2020-06-21T14:52:41Z
dc.date.available2020-06-21T14:52:41Z
dc.date.issued2010
dc.identifier.issn0898-1221
dc.identifier.urihttps://doi.org/10.1016/j.camwa.2009.06.036
dc.identifier.urihttps://hdl.handle.net/20.500.12712/18075
dc.descriptionMomani, Shaher M./0000-0002-6326-8456en_US
dc.descriptionWOS: 000274767000032en_US
dc.description.abstractIn this paper, we present an efficient algorithm for solving a fractional oscillator using the differential transform method. The fractional derivatives are described in the Caputo sense. The application of differential transform method, developed for differential equations of integer order, is extended to derive approximate analytical solutions of a fractional oscillator. The method provides the solution in the form of a rapidly convergent series. Numerical examples are used to illustrate the preciseness and effectiveness of the proposed method. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.isversionof10.1016/j.camwa.2009.06.036en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDifferential transform methoden_US
dc.subjectFractional oscillatoren_US
dc.subjectFractional differential equationen_US
dc.subjectCaputo fractional derivativeen_US
dc.subjectNumerical solutionsen_US
dc.titleSolutions of a fractional oscillator by using differential transform methoden_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume59en_US
dc.identifier.issue3en_US
dc.identifier.startpage1356en_US
dc.identifier.endpage1362en_US
dc.relation.journalComputers & Mathematics With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record