Basit öğe kaydını göster

dc.contributor.authorEgrioglu, Erol
dc.contributor.authorAladag, Cagdas Hakan
dc.contributor.authorYolcu, Ufuk
dc.contributor.authorUslu, Vedide R.
dc.contributor.authorBasaran, Murat A.
dc.date.accessioned2020-06-21T14:54:49Z
dc.date.available2020-06-21T14:54:49Z
dc.date.issued2009
dc.identifier.issn0957-4174
dc.identifier.issn1873-6793
dc.identifier.urihttps://doi.org/10.1016/j.eswa.2009.02.057
dc.identifier.urihttps://hdl.handle.net/20.500.12712/18460
dc.descriptionBasaran, Murat Alper/0000-0001-9887-5531; Egrioglu, Erol/0000-0003-4301-4149; Aladag, Cagdas Hakan/0000-0002-3953-7601en_US
dc.descriptionWOS: 000266851000044en_US
dc.description.abstractFuzzy time series methods have been recently becoming very popular in forecasting. These methods can be categorized into two subclasses that are univariate and multivariate approaches. It is a known fact that real time series data can actually be affected by many factors. In this case, the using multivariate fuzzy time series forecasting model can be more reasonable in order to get more accurate forecasts. To obtain fuzzy forecasts when multivariate fuzzy time series approach is adopted, the most applied method is using tables of fuzzy relations. However, employing this method is a computationally though task. In this study, we introduce a new method that does not require using fuzzy logic relation tables in order to determine fuzzy relationships. Instead, a feed forward artificial neural network is employed to determine fuzzy relationships. The proposed method is applied to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 and a comparison is made between our proposed method and the methods proposed by Jilani and Burney [Jilani, T. A., & Burney, S. M. A. (2008). Multivariate stochastic fuzzy forecasting models. Expert Systems with Applications, 35, 691-700] and Lee et al. [Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two factors high order fuzzy time series. IEEE Transactions on Fuzzy Systems, 14, 468-477]. (C) 2009 Elsevier Ltd. All rights reserved.en_US
dc.language.isoengen_US
dc.publisherPergamon-Elsevier Science Ltden_US
dc.relation.isversionof10.1016/j.eswa.2009.02.057en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectArtificial neural networksen_US
dc.subjectForecastingen_US
dc.subjectFuzzy time seriesen_US
dc.subjectMultivariate fuzzy time series approachesen_US
dc.titleA new approach based on artificial neural networks for high order multivariate fuzzy time seriesen_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume36en_US
dc.identifier.issue7en_US
dc.identifier.startpage10589en_US
dc.identifier.endpage10594en_US
dc.relation.journalExpert Systems With Applicationsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

DosyalarBoyutBiçimGöster

Bu öğe ile ilişkili dosya yok.

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster