Show simple item record

dc.contributor.authorGencten, A.
dc.contributor.authorSaka, I.
dc.date.accessioned2020-06-21T15:25:36Z
dc.date.available2020-06-21T15:25:36Z
dc.date.issued2006
dc.identifier.issn0026-8976
dc.identifier.urihttps://doi.org/10.1080/00268970600909197
dc.identifier.urihttps://hdl.handle.net/20.500.12712/20424
dc.descriptionWOS: 000240598400016en_US
dc.description.abstractThere exist a variety of multi-pulse NMR experiments for spectral assignment of complex molecules in solution. The DEPT-HMQC NMR experiment is a combination of DEPT and HMQC experiments. The product operator theory is widely used for analytical description of multi-pulse NMR experiment for weakly coupled spin systems. In this study, a complete product operator theory for the IS (I = 1/2, S = 1) spin system is presented by obtaining the evolutions of some product operators under the spin-spin coupling Hamiltonian and the evolutions of some angular momentum operators under the chemical shift and radio frequency (r.f.) pulse Hamiltonians. As an application, product operator theory has been used for the analytical description of DEPT-HMQC NMR experiment for CDn groups. Theoretical discussions and experimental suggestions for the sub-spectral editing of CDn groups are presented for this experiment.en_US
dc.language.isoengen_US
dc.publisherTaylor & Francis Ltden_US
dc.relation.isversionof10.1080/00268970600909197en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleA complete product operator theory for IS (I = (1)/(2), S=1) spin system and application to DEPT-HMQC NMR experimenten_US
dc.typearticleen_US
dc.contributor.departmentOMÜen_US
dc.identifier.volume104en_US
dc.identifier.issue18en_US
dc.identifier.startpage2983en_US
dc.identifier.endpage2989en_US
dc.relation.journalMolecular Physicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record